Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35822351

RESUMO

The biomechanical demands of arboreal locomotion are generally thought to necessitate specialized kinetic and kinematic gait characteristics. While such data have been widely collected across arboreal quadrupeds, no study has yet explored how arboreal substrates influence the locomotor behavior of birds. Parrots - an ancient arboreal lineage that exhibit numerous anatomical specializations towards life in the trees - represent an ideal model group within which to examine this relationship. Here, we quantifiy limb loading patterns within the rosy-faced lovebird (Agapornis roseicollis) across a range of experimental conditions to define the circumstances under which arboreal gaits are triggered, and how, during arboreal walking, gait patterns change across substrates of varying diameter. In so doing, we address longstanding questions as to how the challenges associated with arboreality affect gait parameters. Arboreal locomotion was associated with the adoption of a sidling gait, which was employed exclusively on the small and medium diameter poles but not terrestrially. When sidling, the hindlimbs are decoupled into a distinct leading limb (which imparts exclusively braking forces) and trailing limb (which generates only propulsive forces). Sidling was also associated with relatively low pitching forces, even on the smallest substrate. Indeed, these forces were significantly lower than mediolateral forces experienced during striding on terrestrial and large diameter substrates. We propose that the adoption of sidling gaits is a consequence of avian foot morphology and represents a novel form of arboreal locomotion where inversion/eversion is impossible. Such movement mechanics is likely widespread among avian taxa and may also typify patterns of arboreal locomotion in humans.


Assuntos
Agapornis , Animais , Fenômenos Biomecânicos , Marcha , Humanos , Locomoção , Árvores
2.
J Exp Zool A Ecol Integr Physiol ; 337(4): 329-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914867

RESUMO

During the last decade, biomechanical and kinematic studies have suggested that a belly-dragging gait may have represented a critical locomotor stage during tetrapod evolution. This form of locomotion is hypothesized to facilitate animals to move on land with relatively weaker pectoral muscles. The Indonesian blue-tongued skink (Tiliqua gigas) is known for its belly-dragging locomotion and is thought to employ many of the same spatiotemporal gait characteristics of stem tetrapods. Conversely, the savannah monitor (Varanus exanthematicus) employs a raised quadrupedal gait. Thus, differences in the energetic efficiency of locomotion between these taxa may elucidate the role of energetic optimization in driving gait shifts in early tetrapods. Five Tiliqua and four Varanus were custom-fitted for 3D printed helmets that, combined with a Field Metabolic System, were used to collect open-flow respirometry data including O2 consumption, CO2 production, water vapor pressure, barometric pressure, room temperature, and airflow rates. Energetic data were collected for each species at rest, and when walking at three different speeds. Energetic consumption in each taxon increased at greater speeds. On a per-stride basis, energetic costs appear similar between taxa. However, significant differences were observed interspecifically in terms of net cost of transport. Overall, energy expenditure was ~20% higher in Tiliqua at equivalent speeds, suggesting that belly-dragging does impart a tangible energetic cost during quadrupedal locomotion. This cost, coupled with the other practical constraints of belly-dragging (e.g., restricting top-end speed and reducing maneuverability in complex terrains) may have contributed to the adoption of upright quadrupedal walking throughout tetrapod locomotor evolution.


Assuntos
Marcha , Lagartos , Animais , Fenômenos Biomecânicos , Marcha/fisiologia , Indonésia , Locomoção/fisiologia , Caminhada/fisiologia
3.
J Exp Zool A Ecol Integr Physiol ; 337(3): 238-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34752693

RESUMO

While red-backed salamanders (Plethodon cinereus) are most often observed in terrestrial forested areas, several studies report arboreal substrate use and climbing behavior. However, salamanders do not have any of the anatomical features commonly observed in specialized climbing species (e.g., claws, setae, suction cups). Instead, salamanders cling to surfaces using the shear and adhesive properties of their mucous layer. In this study, we explore the capabilities and spatiotemporal gait patterns of arboreal locomotion in the red-backed salamander as they move across twelve substrate conditions ranging in diameter, orientation, and roughness. On arboreal substrates, red-backed salamanders decreased locomotor speed, stride frequency, phase and stride length, and increased duty factor and stride duration. Such responses have been observed in other non-salamander species and are posited to increase arboreal stability. Furthermore, these findings indicate that amphibian locomotion, or at least the locomotor behavior of the red-backed salamander, is not stereotyped and that some locomotor plasticity is possible in response to the demands of the external environment. However, red-backed salamanders were unable to locomote on any small-diameter or vertically-oriented coarse substrates. This finding provides strong evidence that the climbing abilities of red-backed salamanders are attributable solely to mucous adhesion and that this species is unable to produce the necessary external "gripping" forces to achieve fine-branch arboreal locomotion or scale substrates where adhesion is not possible. The red-backed salamander provides an ideal model for arboreal locomotor performance of anatomically-unspecialized amphibians and offers insight into transitionary stages in the evolution of arborealism in this lineage.


Assuntos
Árvores , Urodelos , Animais , Marcha , Locomoção , Urodelos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...